Skew left bracoids via abelian maps

Alan Koch

Agnes Scott College

2023

Alan Koch (Agnes Scott College)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- E

Joint work with

Paul J. Truman

Alan Koch (Agnes Scott College)

æ

イロト イヨト イヨト イヨト

Outline

Background: Bracoids and Abelian Maps

2 The Construction

- 3 ψ -admissible Subgroups
- 4 Two Examples
- 5 Hopf-Galois structures
- 5 Further Work

Recall that a *skew bracoid* is a quintuple $(G, \cdot, N, \star, \odot)$, where $(G, \cdot), (N, \star)$ are groups, and *G* acts transitively on *N* via \odot such that

$$oldsymbol{g} \odot (\eta \star \mu) = (oldsymbol{g} \odot \eta) \star (oldsymbol{g} \odot \mathsf{1}_{oldsymbol{N}})^{\star - 1} \star (oldsymbol{g} \odot \mu)$$

for all $g \in G$, $\eta, \mu \in N$.

Frequent abbreviations:

- "bracoid" for "skew bracoid";
- (G, N, \odot) (or (G, N)) for $(G, \cdot, N, \star, \odot)$;
- gh for $g \cdot h$;
- η^{-1} for $\eta^{\star -1}$;
- We refer to the expression above as the "bracoid relation".

Recall that a *skew bracoid* is a quintuple $(G, \cdot, N, \star, \odot)$, where $(G, \cdot), (N, \star)$ are groups, and *G* acts transitively on *N* via \odot such that

$$\boldsymbol{g} \odot (\eta \star \mu) = (\boldsymbol{g} \odot \eta) \star (\boldsymbol{g} \odot \boldsymbol{1}_N)^{-1} \star (\boldsymbol{g} \odot \mu)$$

for all $g \in G$, $\eta, \mu \in N$.

Objective

Use the theory of abelian maps to construct examples of bracoids.

Let $G = (G, \cdot)$ be a (non abelian) group. An endomorphism $\psi : G \to G$ such that $\psi(G)$ is abelian is called an *abelian map*.

Any abelian map $\psi : G \to G$ creates a bi-skew brace structure (G, \circ, \cdot) where

$$g \circ h = g\psi(g^{-1})h\psi(g).$$

It is well known that this construction can be generalized [Caranti-Stefanello, K–, Stefanello-Trappeniers] but won't be here.

Of course, an abelian map creates a bracoid structure with $G = (G, \cdot), \ N = (G, \circ), \ g \odot h = gh$, but can we use ψ to construct non-brace bracoids?

2 The Construction

- 3) ψ -admissible Subgroups
- 4 Two Examples
- 5 Hopf-Galois structures
- 5 Further Work

・ 同 ト ・ 三 ト ・

Let $\psi : G \to G$ be abelian, and define $\phi(g) = g\psi(g^{-1})$.

Note that ϕ is not an endomorphism, however it is a homomorphism $(G, \circ) \rightarrow (G, \cdot)$.

In particular, $\phi(G) \leq (G, \cdot)$: $\phi(g)\phi(h) = \phi(g\psi(g^{-1})h\psi(g))$.

We say a subgroup *H* of *G* is ψ -compatible (or compatible for short) if $[G, \phi(H)] \leq H$.

Suppose *H* is ψ -compatible. Let *N* = *G*/*H* be the set of left cosets.

For $xH, yH \in N$ we define

$$xH \star yH = (x \circ y)H = x\psi(x^{-1})y\psi(x)H.$$

$[G,\phi(H)] \le H, \ xH \star yH = x\psi(x^{-1})y\psi(x)H$

Note that since

$$\begin{aligned} xh_1H \star yh_2H &= xh_1\psi(h_1^{-1}x^{-1})yh_2\psi(xh_1)H \\ &= x(h_1\psi(h_1^{-1}))\psi(x^{-1})yh_2\psi(x)(\psi(h_1)h_1^{-1})H \\ &= x\psi(x^{-1})yh_2\psi(x)[(\psi(x^{-1})yh_2\psi(x^{-1}))^{-1},\phi(h_1)]H \\ &= x\psi(x^{-1})yh_2\psi(x)H \\ &= x\psi(x^{-1})y\psi(x)\psi(x^{-1})h_2\psi(h_2^{-1})\psi(x)\psi(h_2)h_2^{-1}H \\ &= x\psi(x^{-1})y\psi(x)[\psi(x^{-1}),\phi(h_2)]H \\ &= x\psi(x^{-1})y\psi(x)H \\ &= xH \star yH \end{aligned}$$

the operation is well-defined.

イロト イ団ト イヨト イヨト

$[G,\phi(H)] \le H, \ xH \star yH = x\psi(x^{-1})y\psi(x)H$

Easy to show: $(G/H, \star)$ is a group, identity *eH* and $(xH)^{-1} = \psi(x)x^{-1}\psi(x^{-1})H$.

For $g \in G$, $xH \in G/H$ define $g \odot (xH) = gxH$.

This is clearly a transitive action.

Also, $(g \odot xH) \star (g \odot eH)^{-1} \star (g \odot yh) = gxH \star (gH)^{-1} \star gyH$ and $gxH \star gH^{-1} \star gyH = gxH \star (\psi(g)g^{-1}\psi(g^{-1}))H \star gyH$ $= gx\psi(gx)^{-1}(\psi(g)g^{-1}\psi(g^{-1}))\psi(g)gy\psi(g^{-1})\psi(gx)H$ $= gx\psi(x)^{-1}y\psi(x)H$ $= g \odot (xH \star yH)$

and the bracoid relation holds.

$g \cdot h = gh, xH \star yH = x\psi(x^{-1})y\psi(x)H, g \odot xH = gxH$

Theorem (K–, Truman, 2023)

With the notation as above, $(G, \cdot, G/H, \star, \odot)$ is a bracoid.

Remarks

- The requirement that H be ψ-compatible is both necessary and sufficient here.
- We do not require the group(s) to be finite.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2 The Construction

- 3 ψ -admissible Subgroups
 - 4 Two Examples
- 5 Hopf-Galois structures
- 5 Further Work

< 47 ▶

.

For a given $\psi : \mathbf{G} \rightarrow \mathbf{G}$, are there ψ -admissible subgroups?

```
(Recall we require [G, \phi(H)] \leq H.)
```

Non-interesting examples:

 $H = \{1_G\}$ This gives the bi-skew brace (G, \cdot, \circ) from the original abelian map construction. The bracoid form is $(G, \cdot, G, \circ, \cdot)$.

H = G This gives the unique bracoid structure $(G, \{1_G\})$.

イロト イポト イヨト イヨト

$[G,\phi(H)] \leq H$

Better question. For a given ψ : $G \rightarrow G$, are there proper, nontrivial ψ -admissible subgroups?

Some admissible subgroups are guaranteed.

$$H = F \text{ where } F = \{f \in G : \psi(f) = f\}, \text{ the set of fixed points.} \\ \text{For } f \in F, \phi(f) = f\psi(f^{-1}) = ff^{-1} = 1_G \text{ so} \\ [G, \phi(F)] = [G, \{1_G\}] = \{1_G\} \leq F. \\ \text{Unless } \psi \text{ is fixed-point free, } F \text{ will be proper and} \\ \text{nontrivial. (Also admissible: any } F' \leq F.) \\ H = K \text{ where } K = \ker \psi. \text{ For } k \in K, \phi(k) = k \text{ and since } K \trianglelefteq G \\ \text{ we have } [G, \phi(K)] = [G, K] \leq K. \\ \text{The subgroup } K \text{ is nontrivial, and } K = G \text{ if and only if } \psi \text{ is} \\ \text{ the trivial map (which is not very interesting either).} \end{cases}$$

(Also admissible: any $K' \leq K$, $K' \leq G$.)

H = KF where K, F as above. $[G, \phi(KF)] = [G, K] \le K \le KF$. While almost always nontrivial, possible to have KF = G.

2 The Construction

- 3 ψ -admissible Subgroups
- Two Examples
- 5 Hopf-Galois structures
- 5 Further Work

< 17 ▶

.

First example

Let $G = D_n = \langle r, s : r^n = s^2 = rsrs = 1_G \rangle$ with $n \ge 4$ even. Pick $0 \le j < n/2$ and define $\psi : G \to G$ by $\psi(r) = r^j s$, $\psi(s) = 1_G$. **Fact.** The subgroups of D_n are all of the form

$$\mathcal{H}_d := \langle r^d
angle$$
 or $\mathcal{H}_{c,d} := \langle r^d, r^c s
angle$; $0 \leq c < d, \ d \mid n.$

Complete list of ψ -admissible subgroups:

• *H*₁

- H_{2i}
- *H*_{c,1} = *G*
- *H*_{0,2} = *K*
- $H_{c,d}$ with $d \mid 2(j-c)$, c odd and d even.

Note that $F = H_{j,n} = \langle r^c s \rangle$ if *j* is odd, $F = H_n = \{1_G\}$ if *j* is even.

Let $G = \langle a, b \rangle$ be the free group on two generators.

Define $\psi : \mathbf{G} \to \mathbf{G}$ by $\psi(\mathbf{a}) = \psi(\mathbf{b}) = \mathbf{b}$.

Some admissible subgroups:

•
$$F = \langle b \rangle$$

• $F_d = \langle b^d \rangle, \ d \ge 0$
• $K = \{\prod a^{r_i} b^{s_i} : \sum (r_i + s_i) = 0\}$
• $KF = G$

• $KF_d = \{\prod a^{r_i} b^{s_i} : \sum (r_i + s_i) \equiv 0 \pmod{d} \}$

This produces an infinite number of bracoids.

2 The Construction

- 3 ψ -admissible Subgroups
- 4 Two Examples
- 5 Hopf-Galois structures

6 Further Work

< 47 ▶

- A 🖻 🕨

-

Let E/K be Galois, $Gal(E/K) = (G, \cdot)$.

Let ψ : $G \rightarrow G$ be abelian, and let $H \leq G$ be ψ -compatible.

Let $L = E^H$.

Then the bracoid $(G, \cdot, G/H, \star, \odot)$ gives a Hopf-Galois structure on L/K.

Explicitly, let
$$N = \{\lambda_*(gH) : gH \in (G/H, \star)\}$$
, i.e., $\lambda_*(gH)[xH] = g\psi(g^{-1})x\psi(g)H$.

Then *N* is a regular, *G*-stable subgroup (note that ${}^{k}\lambda_{\star}(gH) = \lambda_{\star}(kg\psi(g^{-1})k\psi(g))$), and hence gives a Hopf-Galois structure on L/K.

(本語) (本語) (本語)

Case $H = \ker \psi$. We have $(G/H, \star)$ is simply the usual factor group G/H and $\lambda_{\star}(gH)$ is left multiplication by gH. This is the canonical nonclassical Hopf-Galois structure on the Galois extension L/K.

Case H = F. Here, L/K is not Galois unless $\phi(G) \leq \text{Cent}(F)$.

Also, if $(G/H, \star)$ is nonabelian, then we can construct another regular, *G*-stable subgroup $P = \{\rho_{\star}(gH) : gH \in G/H\}$, i.e., $\rho_{\star}(gH)[xH] = x\psi(x^{-1})g\psi(x)H$, so there is a "compatibility with opposites".

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An example or six

Let E/K be an $G := S_4$ -extension. Define $\psi : G \to G$ by

$$\psi(\sigma) = \begin{cases} \mathbf{1}_G & \sigma \in \mathbf{A}_4 \\ (\mathbf{12}) & \sigma \notin \mathbf{A}_4 \end{cases}$$

Then ψ is abelian. The list of ψ -compatible subgroups:

ψ -subgroup H	(<i>G</i> / <i>H</i> , *)	[<i>E^H</i> : <i>K</i>]	
{1 _G }	$A_4 \times C_2$	24	HGS from ψ on S_4
⟨ (12) ⟩	A4	12	H = F
⟨(12)(34), (13)(24)⟩	<i>C</i> ₆	6	H = K
$\langle V, (34) angle$	C_3	3	$\lambda(G) \leq Perm(G/H)$
$\langle V, (234) \rangle$	<i>C</i> ₂	2	$\lambda(G) \leq \operatorname{Perm}(G/H)$
S_4	triv.	1	Not interesting

Note: blue are the cases where E^H/K is Galois.

2 The Construction

- 3 ψ -admissible Subgroups
- 4 Two Examples
- 5 Hopf-Galois structures

< 17 ▶

.

Things to think about going forward.

- How common are ψ -compatible subgroups? Early evidence: not very, at least for *G* finite (and nonabelian). For $\psi : S_n \to S_n$ analogous to the map above, the ψ -compatible subgroups in S_n , n = 5, 6 are $\{1_G\}, \langle (12) \rangle, A_n$ and S_n .
- **2** Can this be generalized to larger categories of endomorphisms, e.g., $\psi : G \to G$ with $\psi([G, G]) \leq Z(G)$?
- Solution Are there examples of *ψ* : *G* → *G* with a *ψ*-compatible *H* ≤ *G* where the resulting HGS couldn't arise from some abelian map on *G*/*H*?
- Is there value to infinite bracoids?

Thank you.

æ

イロト イヨト イヨト イヨト